The Georgia Tech Unmanned Aerial Research Vehicle: GTMax

نویسندگان

  • Eric N. Johnson
  • Daniel P. Schrage
چکیده

This paper describes the design, development, and operation of a research Unmanned Aerial Vehicle (UAV) system that has been developed at the Georgia Institute of Technology, called the GTMax. This description will include the processes put in place to enable the system to be used for UAV-technology research, including effective flight testing. Research UAVs are characterized by the need for continual checkout of experimental software and hardware. Also, flight-testing can be further leveraged by complementing research results with flight-test validated simulation results for the same experimental UAV platform. The chosen helicopter-based UAV platform (a Yamaha R-Max) is well instrumented, including: differential GPS, inertial measurement unit, sonar altimeter, radar altimeter, and a 3-axis magnetometer. One or two flight processors can be utilized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flight Simulation for the Development of an Experimental Uav

The use of flight simulation tools to reduce the schedule, risk, and required amount of flight testing for complex aerospace systems is a well-recognized benefit of these approaches. However, some special challenges arise when one attempts to obtain these benefits for the development and operation of an Experimental Uninhabited Aerial Vehicle (UAV) system. These types of UAV systems are charact...

متن کامل

3D Obstacle Avoidance in Adversarial Environments for Unmanned Aerial Vehicles

As unmanned aerial vehicles (UAVs) are considered for a wider variety of military and commercial applications, the ability to navigate autonomously in unknown and hazardous environments is increasingly vital to the effectiveness of UAVs. Reliable and efficient obstacle detection is a fundamental prerequisite to performing autonomous navigation in an unknown environment. Traditional two-dimensio...

متن کامل

Multi-sensor Navigation System for an Autonomous Helicopter

Autonomous Unmanned Aerial Vehicles (UAVs) require avionics systems that enable them to maintain a stable attitude and to follow a desired flight path. This paper considers the design and development of such an avionics system that provides navigational and terrain information to the flight computer of a rotorcraft UAV. The process includes the design and testing of flight hardware and software...

متن کامل

Mission Specification and Control for Unmanned Aerial and Ground Vehicles for Indoor Target Discovery and Tracking

This paper describes ongoing research by Georgia Tech into the challenges of tasking and controlling heterogonous teams of unmanned vehicles in mixed indoor/outdoor reconnaissance scenarios. We outline the tools and techniques necessary for an operator to specify, execute, and monitor such missions. The mission specification framework used for the purposes of intelligence gathering during missi...

متن کامل

Software Enabled Control Experiments with University Operated Unmanned Aircraft

On August 25, 2004, a series of flight experiments and demonstrations were flown at the McKenna urban operations complex at Ft. Benning, GA. These experiments represented the culmination of the rotary wing segment of the DARPA Software Enabled Control program. To support these efforts, an open system Unmanned Aerial Vehicle testbed architecture was developed for the GTMax and GTSpy university-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003